Defending Neural ODE Image Classifiers from Adversarial Attacks with Tolerance Randomization

<u>Fabio Carrara</u>¹, Roberto Caldelli^{2,3}, Fabrizio Falchi¹, Giuseppe Amato¹ ¹ISTI CNR, Pisa, Italy — ²CNIT, Florence, Italy — ³Universitas Mercatorum, Rome, Italy

https://github.com/fabiocarrara/neural-ode-features

MMForWild - ICPR 2021 - January, 11th Milan, Italy (Virtual)

Iniversità telematica delle Camere di Commercio Italiane

Summary

- Neural ODEs
 - what they are
 - how can be used
 - why they are interesting (adaptivity and the tolerance parameter)
- Carlini & Wagner Adversarial Attack
 - the gist of it
 - how Neural ODEs respond
- Tolerance Randomization
 - an adversarial detection scheme for Neural ODEs under strong adversarials inputs
 - experiments and results
- Conclusions and Future Work

Neural Ordinary Differential Equations [9]

- Generalization of Residual Networks
 - **ResNet**: discrete number of coarse updates
 - **N-ODE**: continuous and smooth evolution (infinitesimal updates) defined by parametric ODE
- Forward: solve with ODE solver
- Output: final step of the solution
- **Fully Differentiable**: train the params of ODE with SGD

Neural ODE Image Classifiers

• Neural ODE for Image Classification

- $f(\mathbf{h}(t), t, \theta)$ is implemented as **a small convnet** (comparable to a residual block)
- in the **forward pass**, an **ODE solver is used** to find the output h(1)
- in the training phase, we learn dynamics (by optimizing θ with SGD) that evolve inputs to discriminative features for classification
- performance comparable to standard convnet models

Neural ODE Adaptivity

- ODE Solvers
 - $\circ~$ compute solution by taking small steps in time
- Adaptive ODE Solvers
 step size is adaptively chosen at each iteration
- Tolerance parameter au
 - controls the speed-precision trade-off of the solver
 - **high** au ⇒ less steps, less precise & less computational expensive solution
 - *lower* au ⇒ more steps, more precise solution, more compute needed

Effects of Tolerance

- Tolerance τ affects classification performance
 - MNIST and CIFAR-10
 - ResNet as benchmark
 - \circ $\tau_{\rm train}$ = 10⁻³, $\tau_{\rm test}$ varies
 - $\circ~$ Classification Error vs $au_{
 m test}$
- Tolerance τ affects adversarial robustness [5]
 - high $\tau \Rightarrow$ robustness increases vs weak attacks (PGD)
 - adversarial perturbation is more difficulty propagated through the network

	ResNet	Neural ODE (τ)							
MNIST		10-4	10 ⁻³	10 ⁻²	10 ⁻¹	10 ⁰			
Classification Error (%)	0.4	0.5	0.5	0.6	0.8	1.2			
CIFAR-10									
Classification Error (%)	7.3	9.1	9.2	9.3	10.6	11.3			
INPUT		HIGH $ au$	•						
7		↓ Neural OI Classifie	DE r	→ "7	" AT FA	tack Iled			
ADVERSARIAL ADVERSARIAL ADVERSARIAL		Neural OI Classifie	DE r	→ "9	" AT SUCC	tack Essful			

[5] Carrara, F., Caldelli, R., Falchi, F. and Amato, G., 2019, December. *On the robustness to adversarial examples of neural ode image classifiers*. In 2019 IEEE International Workshop on Information Forensics and Security (**WIFS '19**) (pp. 1-6). IEEE.

Carlini and Wagner (CW) Attack

- Proposed by Carlini and Wagner [3]
 - Considered a strong attack
 - bypassed several proposed defenses for standard neural networks
- Optimization-based attack
 - \circ x is the natural sample
 - $\circ \quad x^{adv}$ is the adversarial sample
 - \circ g() is the misclassification objective
 - $\circ \quad \mid\mid x^{adv}$ $x\mid\mid_2$ is the magnitude of the perturbation
 - **c** is grid-searched
- Usually finds very small perturbations leading to misclassification

[3] Carlini, N., Wagner, D., Towards evaluating the robustness of neural networks. In 2017 IEEE SP. pp. 39-57, 2017

small perturbation objective

 $\min\left(c \cdot g\left(\mathbf{x}^{\mathrm{adv}}\right)\right)$

misclassification objective

Neural ODE vs CW Attacks

- Neural ODEs are still vulnerable
 - MNIST and CIFAR-10
 - Carlini and Wagner (CW) Adversarial Attack
 - \circ au_{attack} = au_{test}
- How τ affects robustness to CW attacks?
 - $\circ~$ Attack Success Rate vs au
 - \circ Mean Adversarial Perturbation Norm vs au
 - higher $au \Rightarrow$
 - lower attack success rate, or
 - higher perturbation magnitude

	Resinet	Neural ODE ($ au$)					
MNIST		10-4	10 ⁻³	10 ⁻²	10 ⁻¹	10 ⁰	
Classification Error (%)	0.4	0.5	0.5	0.6	0.8	1.2	
Attack Success Rate (%)	99.7	99.7	90.7	74.4	71.6	69.7	
Mean L2 Perturb (x10 ⁻²)	1.1	1.4	1.7	1.9	1.7	1.9	
CIFAR-10							
Classification Error (%)	7.3	9.1	9.2	9.3	10.6	11.3	
Attack Success Rate (%)	100	100	100	100	100	100	
Mean L2 Perturb (x10 ⁻⁵)	2.6	2.2	2.4	4.1	8	13.7	

8

(a) MNIST

Attacking & Defending

• Attack assumption: assuming no defense, the best strategy for an attacker is to set

 au_{attack} = au_{train}

- Defense strategy:
 use τ_{test} ≠ τ_{train} in prediction
 - increased robustness
 - negligible performance drop

Tolerance Randomization Defense

- Randomize $au_{ ext{test}}$ at prediction time
 - Randomly sample τ_{test} from log-uniform interval [10⁻⁵; 10⁻¹]
 - $\circ~$ Perform the prediction V times on the same image with the same model using the sampled $\pmb{\tau}_{\text{test}}$
- Create an Ensemble
 - Super-Majority (Qualified Majority) Voting
 - $\circ \mathbf{v}_{agree}$ = number of votes given to the most voted class
 - \circ **v**_{min} = minimum number of votes needed to accept a class
 - if v_{agree} > v_{min}, we accept the classification, otherwise we discard it (may be adversarial)

Experiment and Results

- MNIST and CIFAR-10
- Neural ODE Image Classifier ($\tau_{train} = 10^{-3}$)
- Carlini and Wagner attacks ($\tau_{attack} = \tau_{train}$)
 - 5.000 pristine + 5.000 adversarial images
- Tolerance \(\tau_{\text{test}}\) randomized in log-uniform interval [10⁻⁵; 10⁻¹]
- Ensemble Size V = {5, 10, 15, 20}
- ROC Curve varying v_{min}
 - Positive = Natural
 - Negative = Adversarial

Conclusions and Future Work

- Analysis of Neural ODE as image classifiers robust to adversarial example
- We proposed **Tolerance Randomization** for defending Neural ODEs
- Preliminary experiments on white-box, zero-knowledge attacks:
 - \circ reject ~80% strong Carlini and Wagner adversarials images
 - accept +90% pristine images

• Future Work

fabio.carrara@isti.cnr.it

- \circ thorough analysis of attack robustness under ($au_{
 m train}, au_{
 m test}, au_{
 m attack}$) decoupling
- devise attacks and defenses for more stringent scenarios (attacker knows about defense)

